41 research outputs found

    Decision-Making Aid Tool to Support Renovation of Buildings with Industrialised All-in-One Technology Solutions

    Full text link
    [EN] Unlike other interventions for the improvement of energy efficiency, in the case of the application of prefabricated elements in deep renovations, there is a certain lack of knowledge on the part of potential clients or even technical staff. This article arises from this need, and its objective and main result is the development and presentation of a tool to help in making decisions on whether the industrialized building envelope kits in general and those of the H2020 INFINITE project are applicable in each specific case.Serrano Lanzarote, AB.; Jareño Escudero, CI.; Sanz Almela, D.; Romero Clausell, J. (2021). Decision-Making Aid Tool to Support Renovation of Buildings with Industrialised All-in-One Technology Solutions. Environmental Sciences Proceedings. 11(1):1-5. https://doi.org/10.3390/environsciproc2021011004S1511

    Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process

    Get PDF
    Olive pomace, a solid residue generated during olive oil production process and a rich source of phenolic compounds, was dried and defatted to obtain a pomace oil rich in monounsaturated fatty acids with 64% oleic acid. The defatted pomace was further treated by ultrasound-assisted extraction (UAE). The optimal phenol extraction conditions of 10 min, 40% amplitude and 4% (w/v) solid:solvent ratio, yielded to 14.70 mg/g total phenols, 2.48 mg/g total flavonoids and 0.924 mmol Trolox/g antioxidant activity. In order to purify valuable biophenols, two polymeric resins (XAD4 and XAD16) and two activated charcoals (NPAC and GAC) were tested as adsorbents using a magnetic stirrer and an incubator shaker. XAD16 (100 g/L) in magnetic stirrer showed the optimal adsorption ratios with 74.36%, 39.25%, 68.79% and 100% for total phenols, hydroxytyrosol, tyrosol and oleuropein, respectively. Desorption using acidified 50% (v/v) ethanol-water at pH = 2.3 proved 57.65% recovery of total phenols, 19.27% of hydroxytyrosol and 45.73% of tyrosol. These results indicate that extraction and selective purification of biophenols from olive pomace can be achieved by the proposed UAE using 50% v/v ethanol-water as solvent, followed by adsorption-desorption stages with the XAD16 polymeric resin.Spanish Agencia Estatal de Investigaci ´on [grant number PID2019-104950RB-I00/AEI/10.13039/ 501100011033] and the Junta de Castilla y Le´on (JCyL) and the European Regional Development Fund (ERDF) [grant numbers BU301P18 and BU050P20]

    Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach

    Get PDF
    In this study, we aimed to prepare stable water-in-oil (W/O) nanoemulsions loaded with a phenolic-rich aqueous phase from olive cake extract by applying the response surface methodology and using two methods: rotor-stator mixing and ultrasonic homogenization. The optimal nanoemulsion formulation was 7.4% (w/w) of olive cake extract as the dispersed phase, and 11.2% (w/w) of a surfactant mixture of polyglycerol polyricinoleate (97%) and Tween 80 (3%) in Miglyol oil as the continuous phase. Optimum results were obtained by ultrasonication for 15 min at 20% amplitude, yielding W/O nanoemulsion droplets of 104.9 ± 6.7 nm in diameter and with a polydispersity index (PDI) of 0.156 ± 0.085. Furthermore, an optimal nanoemulsion with a droplet size of 105.8 ± 10.3 nm and a PDI of 0.255 ± 0.045 was prepared using a rotor-stator mixer for 10.1 min at 20,000 rpm. High levels of retention of antioxidant activity (90.2%) and phenolics (83.1–87.2%) were reached after 30 days of storage at room temperature. Both W/O nanoemulsions showed good physical stability during this storage period.Junta de Castilla y León (JCyL) and the European Regional Development Fund (ERDF) through grant number BU050P20, and by the Agencia Estatal de Investigación (grant number PID2019-104950RB-I00/AEI/10.13039/501100011033)

    Relationship Between Bone Mineral Density and Angiotensin Converting Enzyme Polymorphism in Hypertensive Postmenopausal Women

    Get PDF
    Producción CientíficaThe purpose of this study was to assess the relationship between bone mineral density and insertion/ deletion (I/D) angiotensin converting enzyme polymorphism (ACE) in hypertensive postmenopausal women.2015-09-0

    Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD)

    Get PDF
    Tyrosinase from mushroom was used as a model polyphenol oxidase (PPO) enzyme to perform a systematic inactivation study using High Pressure Carbon Dioxide (HPCD). The ratio CO2/volume of enzyme (g/mL) loaded in the reactor was found to be critical. Above a critical ratio, pressure, temperature and time did not control the inactivation performance. Exposure time (2–15 min), temperature (25–45 °C) and pressure (5–20 MPa) allowed to show a characteristic inactivation pattern for PPO: a sudden decrease in activity (at least 75% of the total activity loss was observed within the first 2 min) was followed by a slowed decay. The experimental data were fitted into a two fraction kinetic model and the main kinetic parameters (ZP, ZT activation volume and activation energy) were calculated. The fluorescence spectroscopy analysis of the samples treated with HPCD revealed significant changes in the tertiary structure of the enzyme.Spanish Government (MINECO) and the European Regional Development Fund (ERDF) for financial support of project CTQ2015-64396-R (MINECO/FEDER, UE). To Junta de Castilla y León and ERDF for O.Benito’s Post-doctoral contract funded by project BU055U16. To MINECO for E. de Paz’s Juan de la Cierva Contract (FJCI-2014-19850)

    Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix

    Get PDF
    [EN] The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC analyses showed a fast removal of ENR by (solar photo)-Fenton treatments in all studied water matrices, whereas a 40% removal was observed after 120 min of photolysis. However, TOC measurements showed that only solar photo-Fenton was able to produce significant mineralization (80% after 120 min of treatment); differences between ENR removal and mineralization can be attributed to the release of important amounts of reaction by-products. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were employed to gain further insight into the nature of these by-products and their time-course profile, obtaining a 5-component model. EEM-PARAFAC results indicated that photolysis is not able to produce important changes in the fluoroquinolone structure, in sharp contrast with (solar photo)-Fenton, where decrease of the components associated with fluoroquinolone core was observed. Agar diffusion tests employing E. toll and S. aureus showed that the antibiotic activity decreased in parallel with the destruction of the fluoroquinolone core.This paper is part of a project that has received funding from the European Union's Horizon 2020 - Research and Innovation Framework Programme under the H2020 Marie Sklodowska-Curie Actions grant agreement No 765860. The paper reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.Sciscenko, I.; García-Ballesteros, S.; Sabater Marco, C.; Castillo López, M.; Escudero-Oñate, C.; Oller, I.; Arqués Sanz, A. (2020). Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: Role of pH and water matrix. Science of The Total Environment. 719:1-9. https://doi.org/10.1016/j.scitotenv.2020.137331S1971

    Caffeine Health Claims on Sports Supplement Labeling. Analytical Assessment According to EFSA Scientific Opinion and International Evidence and Criteria

    Get PDF
    Caffeine is a food supplement widely consumed by athletes, but it has not been established. So far, the veracity of their labeling in terms of the dosage and cause/effect relationship aimed at the consumer. The aim is to analyze the health claims and the dosage presented on the labeling of caffeine supplements and to evaluate if they follow the European Food Safety Authority (EFSA) and international criteria. A descriptive cross-sectional study of a sample of caffeine supplements was carried out. The search was done through the Amazon and Google Shopping web portals. In order to assess the adequacy of the health claims, the guidelines of reference established by European Food Safety Authority were compared to the Academy of Nutrition and Dietetics, International Olympic Committee, and Australian Institute of Sport guidelines; in addition, recent systematic reviews were addressed. A review of labels of 42 caffeine supplements showed that, in less than 3% of the products were the health claims supported by the recommendations and by the labeled quantity of caffeine. The claims that fully complied the recommendations were, “improves or increases endurance performance”, “improves strength performance”, or “improves short-term performance”. In most cases, the recommended dosage was 200 mg/day for these products, which is the minimum for the caffeine effects to be declared. The rest of the health claims were not adequate or need to be modified. Most of the health claims identified indicated an unproven cause and effect, which constitutes consumer fraud, and so must be modified or eliminated

    Effect of Quinapril, Quinapril-Hydrochlorothiazide, and Enalapril on the Bone Mass of Hypertensive Subjects: Relationship With Angiotensin Converting Enzyme Polymorphisms

    Get PDF
    Producción CientíficaBackground: Many alterations in extracellular metabolism of calcium have been associated to hypertension, but the number of studies relating this disease with osteoporosis is extremely low. This study clarifies the therapeutic effect of three treatments— quinapril, quinapril hydrochlorothiazide (HCTZ), enalapril—on bone remodeling markers, bone mineral density (BMD) in hypertensive patients, and relationship with angiotensin converting enzyme (ACE) polymorphism.2015-09-0

    Integral valorization of agro-food biomass through pressurized fluids. Case study: Brewery Spent Grain (BSG)

    Get PDF
    Póster presentado en: 1er Encuentro Ibérico de Fluidos Supercríticos/1º Encontro Ibérico de Fluidos Supercríticos. 2020, 18-19 de febrero, Santiago de CompostelaThe biorefinery concept involves the valorization and conversion of biomass into different bioproducts, including energy, materials and chemicals that can replace products derived from fossil carbon sources. The integral valorization of biomass requires the extraction and fractionation of the different constituents thereof, extractables, lipids, proteins and structural components such as cellulose, hemicellulose and lignin. In this work, the use of emerging and clean technologies for the integral valorization of different types of biomass is proposed. First, the use supercritical CO2 (SCCO2) extraction is proposed for recovering the lipid fraction and ultrasonic assisted extraction to recover the hydrophilic fraction, to subsequently perform a fractionation and hydrolysis of the residual biomass using pressurized liquid water. Several types of biomass are being studied, both second and third generation. Among second generation biomass, the brewery spent grain (BSG), which accounts for 85% of the by-products generated in beer processing [1], has been selected as case study of this communication. The extraction of the lipid fraction with SCCO2 has been carried out in a 26.5 mL capacity extractor at different pressures (20-40 MPa) and temperatures (40-80 °C). The lipid fraction obtained has been characterized by determining its lipid profile and antioxidant capacity. The experiments of fractionation and hydrolysis in subcritical water (scW) have been carried out in a semi-continuous reactor, varying the extraction temperature. The different fractions obtained have been characterized by HPLC with two series detectors, UVD and RID, to determine the content in monomeric sugars and oligomers. Protein, free amino acids, total polyphenols and total organic carbon have been also determined. The composition of the BSG according to the biomass characterization protocols of NREL [2] was 21.1 % arabinoxylans, 25.6 % glucanes, 5.1 % soluble lignin, 10.5 % insoluble lignin, 1.2 % ashes, 16.7 % proteins, 5.6 % lipids and 14.4 % extractables. Worth noting the presence of insoluble lignin as well as the high content of arabinoxylans and glucanes, 10% of which were residual starch. The extraction curves obtained when studying the extraction of the lipid fraction of BSG with SCCO2, showed that the extraction rate and the extraction yield increased with increasing temperature and pressure, with the major fatty acid being linoleic acid. Regarding fractionation of the carbohydrate fraction, we have observed that, as temperature increases, hydrolysis increases. Figure 1a shows the sugars yield, including monomeric sugars and oligomers. Degradation of sugars due to the high residence times produces acids (Fig. 1b), hydroxymethylfurfural (HMF) and furfural (Fig. 1c). The treatment of biomass by scW, allows also recovering the entire protein fraction by increasing the temperature up to around 185ºC. In addition, partial hydrolysis of the protein fraction occurs, obtaining as major free aminoacids valine, aspartic acid, alanine and glycine. We can conclude that the fractionation of BSG through emerging and clean technologies allows an integral recovery of BSG, obtaining extracts with high antioxidant capacity. Pressurized water hydrolysis allows the recovery and fractionation of the carbohydrate and protein fraction.JCyL and ERDF for financial support of project BU301P18. To Hiperbaric, S.A. for financial support of Project BIOLIGNO
    corecore